Predicting the Market Potential of Plug-in Electric Vehicles Using Multiday Gps Data
نویسندگان
چکیده
GPS data for a year’s worth of travel by 255 Seattle households illuminate how plug-in electric vehicles can match household needs. The results suggest that a battery-electric vehicle (BEV) with 100 miles of range should meet the needs of 50% of one-vehicle households and 80% of multiple-vehicle households, when charging once a day and relying on another vehicle or mode just 4 days a year. Moreover, the average one-vehicle Seattle household uses each vehicle 23 miles per day and should be able to electrify close to 80% of its miles using a plug-in hybrid electric vehicle (PHEV) with 40-mile all-electric-range. Households owning two or more vehicles can electrify 50 to 70% of their miles using a PHEV40, depending on how they assign the vehicle across drivers each day. Cost comparisons between the average single-vehicle household owning a Chevrolet Cruze versus a Volt PHEV suggest that when gas prices are $3.50 per gallon and electricity rates at 11.2 ct per kWh, the Volt will save the household $535 per year in operating costs. Similarly, the Toyota Prius PHEV will provide an annual savings of $538 per year over the Corolla.
منابع مشابه
Cost and Environmental Pollution Reduction Based on Scheduling of Power Plants and Plug-in Hybrid Electric Vehicles
There has been a global effort to reduce the amount of greenhouse gas emissions. In an electric resource scheduling, emission dispatch and load economic dispatch problems should be considered. Using renewable energy resources (RESs), especially wind and solar, can be effective in cutting back emissions associated with power system. Further, the application of electric vehicles (EV) capable of b...
متن کاملDetailed Modeling and Novel Scheduling of Plug-in Electric Vehicle Energy Storage Systems for Energy Management of Multi-microgrids Considering the Probability of Fault Occurrence
As an effective means of displacing fossil fuel consumption and reducing greenhouse gas emissions, plug-in electric vehicles (PEVs) and plug-in hybrid electric vehicles (PHEVs) have attracted more and more attentions. From the power grid perspective, PHEVs and PEVs equipped with batteries can also be used as energy storage facilities, due to the fact that, these vehicles are parked most of the ...
متن کاملSignificant Characteristics of Multi Carrier Energy Networks for Integration of Plug-In Electric Vehicles to Electric Distribution Network
One of the big concerns of big cities is facing with the increase of fossil fuel vehicles in the roads. The cars intensify greenhouse gas emission in civic centers. One approach to reduce the emission is replacing the cars by Plug-In Electric Vehicles (PEVs). In spite of reducing the emission, PEVs have some adverse effect on electric distribution networks. Technical challenges such as load and...
متن کاملIntelligent Power Control of Green Building-Integrated of Fuel Cell and Plug-in Electric Vehicle in Smart Distribution Systems
The renewable energy sources and plug-in electric vehicles (PEVs) are becoming very popular because of the combination of high fuel costs and concerns about emission issues. This paper presents modelling and control of a Building Integrated Fuel Cell and Plug-in Electric Vehicles (BIFC-PEV) in smart distribution systems. In BIFC-PEV system, conventional building elements could be replaced by sp...
متن کاملModified Harmony Search Algorithm Based Unit Commitment with Plug-in Hybrid Electric Vehicles
Plug-in Hybrid Electric Vehicles (PHEV) technology shows great interest in the recent scientificliteratures. Vehicle-to-grid (V2G) is a interconnection of energy storage of PHEVs and grid. Byimplementation of V2G dependencies of the power system on small expensive conventional units canbe reduced, resulting in reduced operational cost. This paper represents an intelligent unitcommitment (UC) wi...
متن کامل